CE 705: ADVANCED GEOTECHNICAL ENGG (EP-I) SEM VII, GUJARAT UNIVERSITY

-						
Q-1	Give assumptions made in coulomb's wedge theory.					
Q-2	What do you mean by active and passive earth pressure. Derive the equation					
	Ka = $\frac{1-\sin\theta'}{1+\sin\theta'}$ for Rankine's theory. Analytically derive that $\alpha_f = 45+\theta/2$. Also					
	check it graphically.					
Q-3	Explain anchored sheet pile with free earth supports in cohesion less soils.					
Q-4	Give assumptions made in Terzaghi's one dimensional consolidation theory and					
	comment on it. Give limitations of consolidation theory.					
Q-5	Enlist method to find coefficient of consolidation and explain all the methods in					
	detail. Explain field consolidation curve. Describe secondary consolidation. Draw					
0.0	neat sketch of a fixed ring consolidation cell					
Q-6	Explain types of sheet pile walls in detail.					
Q-7	Describe Hvorslev's shear strength parameter.					
Q-8	Explain tri-axial test under different drainage condition.					
Q-9	Derive equation for Skempton's pore pressure parameters.					
Q-10	Define stress path and explain different types of stress path.					
Q-11	Write principles of design of reinforced earth wall.					
Q-12	Describe elements of earth anchors.					
Q-13	In a consolidation test when the load was changed from 50 kN/m2 to 100 kN/m2					
	the void ratio changes from 0.7 to 0.65. Determine coefficient of volume					
Q-14	decrease and the compression index.					
Q-14 Q-15	Explain Rankine's theory for passive earth pressure on cohesionless backfill.					
Q-15 Q-16	Describe the conditions in which soil improvement is necessary.					
Q-17	Enlist method of dynamic compaction for deep layer and explain any one of it. Explain sand compaction piles.					
Q-18	Describe preloading and sand drains.					
Q-19	Give the reasons for use of fly ash in ground improvement technique.					
Q-20	Explain sensitivity, thixotropy and critical void ratio.					
Q-21	Name the major types of geotextile material and explain its classification.					
Q-22	Explain types and uses of geosynthetic.					
Q-23	The following data relate to a tri axial compression tests performed on a soil					
	sample					
	Sr. No.	Chamber	Max deviator	Pore pressure		
		pressure	stress	deviator stress		
	1	80 kN/m2	175 kN/m2	45 kN/m2		
	2	150 kN/m2	240 kN/m2	50 kN/m2		
	3	210 kN/m2	300 kN/m2	60 kN/m2		
		effective stress para				
Q-24	Differentiate general shear failure and local shear failure with neat sketch.					
Q-25				load for a square		
	footing of 2 m side and depth of foundation is 1 m. Use Terzaghi's theory and assume local shear failure. Take γ = 18kN/m2.and Ø=25 deg., Nc= 14.8, Nq=					
		r failure. Take γ= 18	3kN/m2.and Ø=25 d	leg., Nc= 14.8, Nq=		
0.00	5.6 and Nγ= 3.2.					
Q-26				x 2m size founded		
	at the depth 1m in soil with E= 10^4 kN/m ² & μ = 0.3. the footing is subjected to a					
	pressure of 200 kN/ m^2 . Assume the footing to be rigid. Take influence factor					
0.07	0.85.					
Q-27				t of 20 cm under a		
	given loading. If settles by 4 cm at the end of 3 months after application of load increment? How many months will be required to reach a settlement of 8.5 cm?					
1	What is the settlement in 18 months? The layer has double drainage.					

	1							
Q-28	A settlement analysis carried out for a proposed structure indicates that 10 cm							
	of settlement will occur in 5 years and the final settlement will be 50 cm based on							
	douvle drainage condition. A detailed site investigation indicateds that only							
	singal drainage exits. Estimate the settlement at the end of 5 years for the							
	changed condition. Use T=	$= \pi U^2 / 4.$						
Q-29	In a consolidation test the void ratio of the specimen which was 1.07 under the							
	effective pressure of 220 kN/ m^2 , changed to .99 when the pressure was							
	increase to 440 kN/ m^2 , calculate the coefficient of compressibility, compression index, coefficient of volume compressibility. Find the coefficient of foundation							
	index, coefficient of volume compressibility. Find the settlement of foundation							
	resting on above type of clay if thickness of layer is 10 m and the increase in							
	pressure is 15 kN/m ² .							
Q-30	A wall with a smooth vertical back , 10 m high, supports a purely cohesive soil							
	with c=9.91 kN/m ² and γ = 17.66 kN/m ³ . Determine							
	(i) total Rankine's active pressure against the wall.(ii) Position of zero pressure.							
	(iii) distance of the centre of pressure above the base.							
Q-31	A 12 m high retaining wall with a smooth vertical back retains a mass of moist							
	cohesionless sand with a horizontal surface. The sand weighs 15 kN/m ³ and has							
	an angle of internal friction		C					
	(i) Compute the total lateral earth pressure at rest, and its location.							
		•	ind surface, determine the					
	increase in earth pressure at rest. Assume $K_R = 0.5$.							
Q-32			pressure Ps. Failure of the					
Q UZ	A triaxial test performed on a cohesive soil with a cell pressure Ps. Failure of the specimen occurred under total pressure of 40 kN/cm ² . With same soil, direct specimen details and a specimen former total pressure of 40 kN/cm ² .							
	shear test was also done. Shearing force at failure were 460N and 340N und							
	normal loads of 1000N and 500N respectively. The sectional area shear box							
	was 36 <i>cm</i> ² . Find the cell pressure Ps at failure.							
Q-33	What is active and passive earth pressure? Derive the formula Ka.							
Q-34	A retaining wall 8m high retains sand with $Ø=30$ deg, and unit weight 24 kN/ m^3 up to a depth of 4m from the top. From 4m to 8m, the material is a cohesive soil							
	with C= 20 kN/ m^2 and Ø=20 deg. Unit weight of cohesive soil is 18 kN/ m^3 . A uniform surcharge of 100 kN/ m^2 acts on the top of soil. Determine the total							
	lateral pressure acting on the wall and its point of application.							
Q-35	Following are the results of undrained triaxial compression test on two identical							
	soil specimen at failure:	· · · · · · · · · · · ·						
	Lateral pressure	120	320					
	$\sigma_3(kN/m^2)$		020					
	Total vertical	460	780					
		400	780					
	pressureo1(kN/m ²)	25						
	Pore water pressure	-25	60					
	u(kN/m ²)							
	Determine the cohesion and angle of shearing resistance							
	(1.) referred to total stress							
	(1.) referred to total stress(2.) referred to effective stress							
Q-36	(1.) referred to total stress(2.) referred to effective stress		fort retaining wall 0.81 and					
Q-36	(1.) referred to total stress(2.) referred to effective stress9m high non cohesive back	kfill retained by a counter	fort retaining wall 0.81 and value respectively in loose					
Q-36	 (1.) referred to total stress (2.) referred to effective stress 9m high non cohesive back 30 deg are the void ratio and 	kfill retained by a counter nd angle of internal friction	value respectively in loose					
Q-36	 (1.) referred to total stress (2.) referred to effective stress 9m high non cohesive back 30 deg are the void ratio at state and 0.46 and 36 deg 	ckfill retained by a counter nd angle of internal friction in the dense state. Calcula						
	 (1.) referred to total stress (2.) referred to effective stress 9m high non cohesive back 30 deg are the void ratio at state and 0.46 and 36 deg passive earth pressure in back 	ckfill retained by a countern nd angle of internal friction in the dense state. Calcula both cases taking G=2.67.	value respectively in loose ate and compare active and					
Q-36 Q-38	 (1.) referred to total stress (2.) referred to effective stress 9m high non cohesive back 30 deg are the void ratio and state and 0.46 and 36 deg passive earth pressure in back A canal is excavated to a construction 	ckfill retained by a counter nd angle of internal friction in the dense state. Calcula both cases taking G=2.67. depth of 6 m below ground	value respectively in loose ate and compare active and level through a soil having					
	 (1.) referred to total stress (2.) referred to effective stress 9m high non cohesive back 30 deg are the void ratio at state and 0.46 and 36 deg passive earth pressure in back A canal is excavated to a construct the following characteristic 	ckfill retained by a counternation of angle of internal friction in the dense state. Calculation the dense stating G=2.67. The depth of 6 m below ground cs. C= 15 kN/ m^2 , Ø'=16 dense station of the dense station of t	value respectively in loose ate and compare active and level through a soil having eg, E = 0.82, G= 27. the					
	 (1.) referred to total stress (2.) referred to effective stress 9m high non cohesive back 30 deg are the void ratio and state and 0.46 and 36 deg passive earth pressure in back A canal is excavated to a construction of the following characteristic slope of the banks is 1:1. 	ckfill retained by a counternal friction in the dense state. Calcula both cases taking G=2.67. depth of 6 m below ground cs. C= 15 kN/ m^2 , Ø'=16 de Calculate the factor of safe	value respectively in loose ate and compare active and level through a soil having eg, $E = 0.82$, $G = 2$ 7. the ty with respect to cohesion					
	 (1.) referred to total stress (2.) referred to effective stress 9m high non cohesive back 30 deg are the void ratio and state and 0.46 and 36 deg passive earth pressure in back A canal is excavated to a construction of the following characteristic slope of the banks is 1:1. 	ckfill retained by a counternal friction in the dense state. Calcula both cases taking G=2.67. depth of 6 m below ground cs. C= 15 kN/ m^2 , Ø'=16 de Calculate the factor of safe	value respectively in loose ate and compare active and level through a soil having eg, E = 0.82, G= 27. the					

Q-39	Compute the active earth pressure at a depth of 4.5 m in a sand whose angle of friction is 37° and density of 1.56 gm/cc in dry state. Also compute the active earth pressure if the water-table is located at a depth of 1.5 m below the ground	
	surface. Assume submerged density of soil as 0.985 gm/cc.	
Q-40	A vertical wall 5.0 m high, above the water-table, retains a 20° soil slope. The retained soil has a unit weight of 18 kN/m ³ , and its shear strength parameters are c=0 and Φ =40°. Compute the total active thrust on the wall, and directions of the two set of failure planes relative to the horizontal. Use graphical method.	